

AL NOOR INTERNATIONAL SCHOOL Riyadh, Saudi Arabia

Physical Science Workbook

Name: ____

Grade 7 - ____

Academic Year: _

Chapter 1 Solids, Liquids, and Gases States of Matter

Understanding Main Ideas

Answer the following questions in the space provided.

- **1.** What are the general characteristics of a solid?
- **2.** How do crystalline solids differ from amorphous solids?
- **3.** How are liquids described in terms of shape and volume?
- 4. Explain why a sewing needle can float on the surface of water in a glass.
- 5. What determines the shape and volume of a gas inside a container?

Building Vocabulary

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- Rubber and glass, which become softer as they are heated, are 6. ____ examples of crystalline solids.
- 7. _____ When you see steam, fog, or clouds, you are seeing water in the liquid state.
- 8. _____ The volume of a gas is the force of its outward push divided by the area of the walls of the container.
- 9. _____ A(n) gas has a definite volume but no definite shape.
- **10.** ______ A(n) <u>fluid</u> has a definite shape and volume.

Name	Date	Class

States of Matter

Fill in the blank to complete each statement.

- The amount of space that matter fills is its ______
- 2. A state of matter with a definite volume, but no definite shape is a(n) ______.
- **3.** A(n) will always take the shape and volume of its container.
- 4. The ______ is a measure of the average speed of the particles in a substance.
- 5. A(n) _____ has a definite volume but no shape of its own.
- 6. The ______ of a gas is the force of its outward push divided by the area of the walls

of its container.

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 7. ______<u>Viscosity</u> is the inward force among the molecules of a liquid.
- 8. _____ A(n) amorphous solid has a definite melting point.
- 9. _____ Both gases and liquids are <u>fluids</u>.
- 10. _____All solids have a closely packed, fixed arrangement of particles.

Name [Date Class				
Changes of State					
Understanding Main Ideas Fill in the blank to complete each statement.	Understanding Main Ideas Fill in the blank to complete each statement.				
1. Both sublimation and o	occur only on the surface of a substance.				
2. The of melting is freezi	ng.				
 When butter is heated it melts, and when that process is called 	melted butter cools and solidifies the				
4. When a gas turns to a liquid, the energy of the	particles				
5. Vaporization is the reverse of					
Building Vocabulary Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.					
6. melting	a. the change from a liquid to a gas				
7 freezing	b. the change from a solid to a liquid				
8 condensing	c. the change from a solid to a gas				
9 vaporizing	d. the change from a gas to a liquid				
10. subliming	e. the change from a liquid to a solid				

Changes of State

Write the letter of the correct answer on the line at the left.

- **1.** Which of the following describes the process of freezing?
 - A Freezing occurs when the temperature of a substance drops to 0°C.
 - B Freezing occurs when the particles of a solid vibrate so fast that they break free.
 - C Freezing occurs when the temperature drops enough a gas turns into a solid.
 - D Freezing occurs when the particles in a liquid slow down and take fixed positions.
- **3.** The temperature at which a liquid turns to a gas is
 - A called the freezing point
 - B called the boiling point
 - C 100°C
 - D the same for an amorphous or a crystalline solid

- 2. The process that makes ice cubes shrink as they sit in a freezer is called
 - A sublimation
 - B condensation
 - C freezing
 - D boiling
- 4. ____ Particles of which of the following have the greatest thermal energy?
 - A a liquid
 - B a crystalline solid
 - C a gas
 - D an amorphous solid

If the statement is true, write true. If the statement is false, change the underlined

word or words to make the statement true.

- 5. ______ Sublimation and <u>boiling</u> both happen at the surface of the substance.
- 6. _____ Vaporization is the reverse of <u>condens</u>ation.
- 7. _____ The temperature at which a liquid turns to a gas is called the boiling point.
- 8. _____Boiling is the reverse of freezing.
- 9. _____ Water particles in gas coming off of a pan of boiling water are moving

slower than the particles of the water in the pan.

10. _____ Evaporation and <u>condensation</u> are both types of vaporization.

Gas Behavior

Understanding Main Ideas

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 1. ______ If the temperature of a gas is constant, when the pressure is increased, the volume decreases.
- 2. ______ If the air pressure inside an inner tube is constant, when the temperature of the air is increased, the volume decreases.
- **3.** _____ The graph of the relationship between the volume of a gas at constant temperature and its pressure is a(n) line.
- **4.** If the temperature of a gas inside a sealed, rigid container is decreased, its pressure decreases.
- 5. _____ The graph for Charles's law shows that the volume of a gas at constant pressure is inversely proportional to its temperature.
- 6. If a gas at constant pressure inside a cylinder topped by a movable piston is heated, the volume of the gas will increase and push the piston outward.

Building Vocabulary

- 7. When the graph relating two variables is a straight line passing through the origin, the variables are _____ proportional.
- **8.** According to law, when the pressure of a gas at constant temperature is increased, the volume of the gas decreases.
- **9.** According to law, when the temperature of a gas is increased at constant pressure, its volume increases.
- **10.** When the product of two variables is constant, the variables are proportional to each other.

Gas Behavior

Write the letter of the correct answer on the line at the left.

- **1.** ____ At constant temperature, when the volume of a gas is decreased, what happens to its pressure?
 - A It decreases.
 - B It will vary.
 - C It increases.
 - D It remains constant.
- **3.** At constant pressure, how are the temperature and volume of a gas related?
 - A They are inversely proportional.
 - B They are directly proportional.
 - C They are constant.
 - D They are indirectly proportional.

2. At constant pressure, when the temperature of a gas is decreased, what happens to its volume?

- A It decreases.
- B It will vary.
- C It increases.
- D It remains constant.
- 4. ____ If the sun shining through windows heats the air in a sealed room, what happens to the air pressure in that room?
 - A It decreases.
 - B It will vary.
 - C It increases.
 - D It remains constant.

Fill in the blank to complete each statement.

5. When Martin pushes down on the handle of his bicycle pump, the air pressure within the

pump ______.

6. law describes the relationship between a gas's volume and pressure when its

temperature is constant.

7. law describes the relationship between a gas's temperature and volume

when its pressure is constant.

- **8.** At constant temperature, the pressure and volume of a gas are proportional.
- **9.** At constant volume, when the temperature of a gas decreases, the pressure
- 10. When the graph relating two variables is a straight line passing through the origin, the variables are

proportional to each other.

Chapter 2 Atoms and Bonding

Atoms, Bonding, and the Periodic Table

Understanding Main Ideas

Look at the diagram below. Then answer the following questions in the space provided.

- 1. How many protons does a nitrogen atom have?
- 2. How many valence electrons does a nitrogen atom have?
- 3. Is nitrogen reactive or stable?
- 4. Neon (Ne), which has an atomic number of 10 is in Group 18 in the periodic table. To which group does nitrogen belong?
- 5. The element directly below nitrogen in the periodic table is phosphorus (P). How many valence electrons does phosphorus have?
- 6. Will the properties of nitrogen be more similar to the properties of neon or the properties of phosphorus? Explain.

Building Vocabulary

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 7. An element's reactivity is determined by the number of protons found in an atom of the element.
- 8. The force of attraction that holds two atoms together is called a <u>chemical</u> bond.
- 9. In a(n) periodic table, dots around an element's symbol indicate the number of valence electrons in an atom.

Atoms, Bonding, and the Periodic Table

If the statement is true, write true. If the statement is false, change the underlined word

or words to make the statement true.

- 1. ______ An atom's valence electrons are those electrons that have the highest energy.
- 2. ______ Atoms tend to be stable and nonreactive if they have six valence electrons.
- 3. _____ In the periodic table, the number of valence electrons in each element

decreases from left to right across each period.

- 4. _____ The reactivity of a metal depends on how easily it loses its valence electrons.
- 5. _____ Within each period in the periodic table, elements have similar properties

because they have the same number of valence electrons.

Fill in the blank to complete each statement.

6. The number of ______ in the atom of an element determines its chemical properties.

7. The columns in the periodic table are called ______.

8. A(n) ______ shows the number of valence electrons in an

atom in pictorial fashion.

- 9. The attractive force that holds two atoms together is called a(n) ______.
- 10. Because it can either lose or share electrons when it combines with other elements, each

has some of the properties of metals and some of the properties of

nonmetals.

Name	Date	Class

Ionic Bonds

Understanding Main Ideas

Fill in the blank to complete each statement.

- 1. Negative ions form when atoms ______ valence electrons.
- 2. In the formation of an ionic compound, a metal atom is most likely to ______ valence electrons.
- 3. lonic compounds form because _____ charges attract.

Answer the following questions in the spaces provided. You may use a periodic table.

- 4. A potassium ion has a charge of 1+. A sulfide ion has a charge of 2-.What is the chemical formula for potassium sulfide?
- **5.** Name the following compound: MgO.

Building Vocabulary

Write a definition for each of these terms.

6. ion_____

7. polyatomic ion_____

8. ionic bond_____

9. ionic compound ______

10. chemical formula_____

Ionic Bonds

Write the letter of the correct answer on the line at the left.

- 1. ____ lonic bonds form between two ions that have
 - A ionic compounds
 - B negative charges
 - C positive charges
 - D opposite charges

- 2. ____ lons that are made of more than one atom are called
 - A ionic compounds
 - B crystals
 - C polyatomic atoms
 - D ionic bonds
- **3.** ____ Which is most likely to form a negative ion?
 - A an element from Group 17
 - B a metal
 - C an element from Group 1
 - D an element with atoms that have eight valence electrons
- 4. ____ Which of the following is the correct name for MgCl₂?
 - A magnesium chlorine
 - B magnesium dichlorine
 - C magnesium chloride
 - D magnesium dichloride

Fill in the blank to complete each statement.

5. A(n) is an atom or group of atoms that has an electric charge.

6. The attraction between oppositely charged ions is called a(n)

7. When an atom loses a valence electron, it becomes a(n) ion.

- 8. In order to have a stable arrangement of 8 valence electrons, metal atoms are likely to electrons.
- 9. In an ionic compound, the total positive charge of all the positive ions ______ the total negative charge of all the negative ions.
- 10. Because the force of attraction between the positive and negative ions is so strong, ionic compounds have melting points.

Covalent Bonds

Understanding Main Ideas Answer the following questions in the spaces provided. Use the diagram at right to answer questions 1-5. ⁽⁺⁾H:F: 0::0 1. Circle all of the covalent bonds in the electron dot diagrams. 2. Which bond(s) shown are double bonds? N N :F:F: 3. Which bond(s) shown are triple bonds? 4. Which molecule(s) shown have polar bonds? **5.** Compare and contrast O₂ and F₂.

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

- 6. molecule **a.** the chemical bond formed when two atoms share electrons
- 7. ____ double bond **b.** a neutral group of atoms joined by covalent bonds
- c. a bond in which electrons are shared unequally 8. ____ nonpolar bond
- 9. ____ polar bond
- **d.** a bond in which electrons are shared equally
- e. a bond in which four electrons are shared 10. ____ covalent bond

Covalent Bonds

Write the letter of the correct answer on the line at the left.

1.	sh	_ In an electron dot diagram, two pairs of ared electrons represents a	2.	_ A nitrogen molecule (N ₂) has one ple bond. How many electrons do the
	А	single bond	nit	rogen atoms share?
	в	double bond	Α	1
	С	triple bond	В	3
	D	guadruple bond	С	4
			D	6

- **3.** Compared to ionic compounds, molecular compounds generally have
 - A good conductivity
 - B greater densities
 - C more chemical bonds
 - D a low boiling point

- **4.** Compared to ionic compounds, molecular compounds generally have
 - A stronger chemical bonds
 - B poor conductivity
 - C a high melting point
 - D lower densities

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

5. _____ The chemical bond formed when two atoms share electrons is called a(n) ionic bond.

- 6. _____ Covalent bonds usually form when a nonmetal combines with a(n) metal.
- 7. A(n) ion is a neutral group of atoms joined by covalent bonds.
- 8. _____ If a molecule contains polar bonds, the molecule may or may not be polar overall.
- 9. _____ In a(n) polar bond, one atom pulls on the shared electrons more than the other atom.
- **10.** The forces between molecules are much stronger than the forces between ions.

Name _____ Bonding in Metals

Understanding Main Ideas

Use the diagram to answer the following questions .

- 1. What do points a and b represent? ____
- 2. What action is modeled by the diagram? Explain.

3. How does metallic bonding explain the result at point c?

Match each property of metal with its description by writing the letter of the correct description in the right column on the line beside the property in the left column.

- 4. ____ luster
- 5. ____ ductility
- 6. ____ malleability
- 7. ____ thermal conductivity
- 8. _____ electrical conductivity

- a. easily beaten into complex shapes
- b. conducts electric current well
- c. shiny and reflective
- d. easily bent and pulled into thin strands
- e. conducts heat well

Building Vocabulary

Write a definition for each of these terms.

9. metallic bond

10. alloy

_____ Date ______ Class _____

Write the letter of the correct answer on the line at the left.

- 1. ____ Why are alloys generally used to make everyday objects?
 - A Alloys are often stronger and less reactive than pure metals.
 - B Alloys have higher melting points than pure metals.
 - C Alloys are less expensive to produce than pure metals.
 - D Alloys have ionic bonds instead of metallic bonds.
- **3.** Which of the following is NOT a property of metals?
 - A ductile
 - B good electrical conductor
 - C good thermal insulator
 - D malleable

- 2. ____ Metallic bonding is
 - A a type of covalent bond
 - B a type of ionic bond
 - C an attraction between positive and negative ions
 - D an attraction between positive ions and electrons
- 4. ____ At room temperature, most metals are
 - A liquid
 - B solid
 - C gas
 - D an alloy

Fill in the blank to complete each statement.

- 5. An attraction between a positive metal ion and surrounding electrons is a(n) _____ bond.
- 6. Metals typically have melting points.
- 7. The metal fins that cool a motorcycle's engine make use of the high ______ conductivity of metals.

8. Metals are often used to make wire because they are

- 9. Metals are used in electrical wires because they have high ______ conductivity.
- 10. Nonmetals are unlikely to form metallic bonds because their ______ are strongly held.

Chapter 3 Chemical Reactions

Observing Chemical Change

Understanding Main Ideas

Complete the following table. Describe changes in properties that you might notice during each process and state whether the changes are chemical or physical.

Changes in Matter		
Event	Observable Changes	Type of Change
Baking a cake	1.	2.
Burning a log	3.	4.
Freezing water	5.	6.

Building Vocabulary

- 7. Any change that alters a substance without changing it into another substance is a(n) ____ change.
- 8. _____ is anything that has mass and takes up space.
- **9.** A reaction that releases energy in the form of heat is called a(n) ______ reaction.
- **10.** A(n) ______ reaction is a reaction in which energy is absorbed.
- **11.** A chemical change is also referred to as a(n) _____
- **12.** A(n) ______ is a solid formed from liquid reactants during a chemical reaction.

Observing Chemical Change

Write the letter of the correct answer on the line at the left.

- 1. ____ Which of the following is true about chemical reactions?
 - A They are accompanied by changes in energy.
 - B They form new substances with new properties.
 - C both A and B
 - D neither A nor B
- 3. Which of the following is NOT a physical property?
 - A melting point
 - B state of matter
 - C density
 - D flammability

- 2. ____ In an endothermic reaction, energy is
 - A absorbed
 - B released
 - C converted to mass
 - D synthesized
- 4. Substances formed as a result of a chemical reaction are called
 - A catalysts
 - **B** precipitates
 - C products
 - D reactants

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 5. _____ In an exothermic reaction, products have <u>more</u> energy than reactants.
- **6.** Water boils at 100°C. This is an example of a chemical property.
- 7. Substances that enter into a chemical reaction are called products.
- 8. _____ The ability to react with oxygen is an example of a <u>chemical</u> property.
- 9. _____ Another name for a chemical change is a chemical bond.
- 10. _____ In a physical change, some of the physical properties of the substance

may be altered and the chemical composition remains the same.

Name _____ Date _____ Class __

Describing Chemical Reactions

Understanding Main Ideas

Complete the table. Balance each equation. Then indicate whether the reaction is a synthesis, decomposition, or replacement reaction.

	Given Equation	Balanced Equation	Type of Reaction
1.	$\text{FeS} + \text{HCI} \rightarrow \text{FeCI}_2 + \text{H}_2\text{S}$	a.	b.
2.	$Na + F_2 \rightarrow NaF$	a.	b.
3.	$HgO \rightarrow Hg + O_2$	а.	b.

Answer questions 4 and 5 on a separate sheet of paper.

4. Describe in words the reaction represented by the equation and include a description of the composition of each kind of molecule.

 $2 H_2 + O_2 \rightarrow 2 H_2O$

5. Use the law of conservation of mass to explain why the equation in question 4 is balanced.

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

6	chemical equation	a. substance present after a reaction
7	decomposition	b. reaction in which substances combine to form a more complex compound
	reaction	c. principle that states that matter is not created or destroyed
8.	coefficient	during a chemical reaction
9.	product	d. reaction in which one element replaces another in a compound
		e. substance present before a reaction
10.	reactant	f. number telling how many molecules of a substance are involved
11	synthesis reaction	in a chemical reaction
12	replacement reaction	g. reaction in which compounds are broken down into simpler substances
13	conservation of mass	h. uses symbols and formulas to show chemical reactions

Describing Chemical Reactions

Write the letter of the correct answer on the line at the left.

1	In a balanced chemical equation,	2. When the equation AI + $Br_2 \rightarrow AIBr_3$ is
Α	atoms are conserved	balanced, the coefficient for Al is
В	coefficients are equal	A 1
С	molecules are equal	B 2
D	energy is not conserved	C 3
		D 4

- **3.** ____ The reaction in which hydrogen and oxygen are produced by running an electric current through water is an example of
 - A single replacement
 - B decomposition
 - C synthesis
 - D double replacement

- **4.** A reaction that has two compounds as reactants and two compounds as products is most likely a
 - A synthesis reaction
 - B single replacement reaction
 - C double replacement reaction
 - D decomposition reaction

Fill in the blank to complete each statement.

5. A number written in front of a chemical formula is a(n) ______.

- 6. The principle that states that matter is neither created nor destroyed during a chemical reaction is called the law of ______.
- 7. The production of carbon dioxide during the burning of a fuel is an example of

a(n) reaction.

8. In a chemical equation, the arrow is read as _____.

9. In the balanced chemical equation for the formation of ammonia (NH₃) from

nitrogen (N₂) and hydrogen (H₂), the sum of the coefficients is _____

10. The law of conservation of mass was first demonstrated by the French

chemist .

Controlling Chemical Reactions

Understanding Main Ideas

Use the figures below to answer questions 1–3. Write your answers on a the space provided.

- 1. Use what you know about endothermic and exothermic reactions to explain the differences in the graphs above.
- 2. Why is the activation energy pictured as a hill in the two diagrams?
- 3. Explain how adding heat to the reactions shown in the diagrams would change the rate of these chemical reactions. Name two other ways to change the rate of a chemical reaction.

Building Vocabulary

Write a definition for each of these terms on the lines below.

- 4. concentration
- 5. enzyme
- 6. inhibitor

Controlling Chemical Reactions

If the statement is true, write true. If the statement is false, change the underlined word

or words to make the statement true.

- 1. _____ Increasing the surface area of the reactants will decrease the rate of the reaction.
- 2. _____ The amount of a substance in a given volume is the <u>concentration</u> of the substance.
- 3. _____ The effect of a catalyst on a reaction is to raise the activation energy.
- 4. <u>Only some</u> reactions require activation energy.
- 5. _____ A(n) inhibitor decreases the rate of a reaction.

- 6. The burning of fuels, such as coal, natural gas, or oil, involves a(n) reaction.
- 7. In an endothermic reaction, the energy of the products is ______ than the energy of the reactants.
- **8.** Increasing the temperature of a reaction will the rate of the reaction.
- 9. The amount of a substance in a given volume is called ______.
- **10.** Biological catalysts in the human body are called ______.

Chapter 10 Minerals and Rocks Properties of Minerals

Understanding Main Ideas

Answer the following questions on a separate sheet of paper.

- 1. List the five characteristics necessary for a substance to be a mineral.
- 2. In general, what are three ways in which minerals form?

Fill in the missing properties in the table below.

Mineral Property	Test	
3.	Perform scratch test	
Color	Observe surface of mineral	
4.	Observe color of mineral's powder	
Luster	Observe how mineral reflects light	
5.	Find mass per unit volume	
6.	Observe number and angle of crystal faces	
Cleavage and Fracture	Break mineral apart to see if it splits along flat surfaces	

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

- 7. ____ streak
- 8. _____ fracture
- 9. ____ Mohs hardness scale
- 10. ____ crystal
- 11. ____ cleavage
- 12. ____ inorganic
- 13. ____ solution

- **a.** formed from materials that were not a part of living things
- b. the property of splitting easily along flat surfaces
- c. how a mineral breaks apart in an irregular way
- d. the repeating pattern of a mineral's particles in a solid
- e. the color of a mineral's powder
- f. a ranking of minerals from softest to hardest
- g. a mixture in which one substance is dissolved in another

Name	Date	Class		
Properties of Minerals				
Fill in the blank to complete each st	atement.			
1. A mineral's streak is the color of its		-		
2. Quartz, gold, and calcite are examp	les of	, but coal is not.		
3. Geologists use the	test to determ	ine the hardness of a mineral.		
4. The repeating pattern of a mineral's	particles forms a solid o	called a(n)		
5. A narrow channel or slab of a miner	ral that is different from t	he surrounding rock is called		
a(n)				
6. Slow cooling of hot magma leads to	the formation of	crystals.		

Write the letter of the correct answer on the line at the left.

- 7. ____ Which is *not* an essential characteristic of any mineral?
 - A crystal structure
 - B solid
 - C formed by inorganic processes
 - D naturally occurring
- **9.** Which term describes how a mineral looks when it breaks apart in an irregular way?
 - A fracture
 - B cleavage
 - C luster
 - D crystallization

- 8. ____ Which is *not* a method by which minerals form?
 - A organic processes
 - B water evaporation from a solution
 - C cooling of magma or lava
 - D decrystallization
- **10.** ____ Which lists the minerals in the correct order from softest to hardest?
 - A talc, diamond, calcite, feldspar
 - B diamond, feldspar, calcite, talc
 - C talc, calcite, feldspar, diamond
 - D calcite, feldspar, talc, diamond

Classifying Rocks

Understanding Main Ideas

Answer the following questions on the space provided.

- 1. What characteristics do geologists observe when studying a rock sample?
- 2. Name the three major groups of rocks and describe how each forms.

Fill in the missing information in the table below.

Grain Property	Description	Texture
Size	Large, easy to see	3.
Size	4.	Fine-grained
Shape	Mineral crystals	Crystalline
5.	Rock fragments	Rounded or jagged
6.	Layered or random grains	Banded or nonbanded

Building Vocabulary

Fill in the blank to complete each statement.

7. ______ is a dark-colored rock with a relatively low silica content.

8. The look and feel of a rock's surface is its _____.

- **9.** The particles of minerals or other rocks that make up a rock are called
- **10.** The 20 minerals that make up most of the rocks of Earth's crust are known as ______.
- **11.** ______ is generally a light-colored rock with a high silica content.
- **12.** _____ rock forms when rock particles get pressed and cemented together.
- **13.** _____ rock forms when a rock is changed by heat or pressure.
- 14. _____ rock forms when magma or lava cools and hardens.

Classifying Rocks

Write the letter of the correct answer on the line at the left.

1.	About how many rock-forming	2	Which generally describes granite?
	minerals make up most of the rocks of	А	dark-colored rock with low silica content
	Earth's crust?	в	dark-colored rock with high silica
	A 2	D	content
	B 20		
	C 200	С	light-colored rock with low silica content
	D 2,000	D	light-colored rock with high silica content
_			
3.	Which is a kind of rock that forms when	4	Which term describes how a rock's
	heat or pressure change an existing rock?	รเ	urface looks and feels?
	A sedimentary	A	density
	B igneous	В	streak
	C inorganic	С	texture
	D metamorphic	D	fracture

If the statement is true, write true. If the statement is false, change the underlined word

or words to make the statement true.

- 5. _____ Color alone <u>does not</u> provide enough information to identify a rock.
- 6. _____ To study a rock sample, geologists observe the rock's mineral composition, color, and temperature.
- 7. _____ The way in which each of the three major groups of rocks forms is <u>different</u>.
- 8. _____ A rock's pigments give the rock its texture.
- 9. _____ Rocks that have large grains you can easily see are described as fine grained.
- 10. _____ Rocks that are nonbanded have grains that lie in a pattern of flat layers or form

swirls.

Igneous Rocks

Understanding Main Ideas

Answer the following questions on a separate sheet of paper.

- 1. How are igneous rocks classified?
- 2. What is the most common type of extrusive rock?
- 3. What is the most common type of intrusive rock?
- **4.** Explain how the silica content of molten material affects the color of igneous rocks.
- 5. What qualities of igneous rocks have long made them useful for tools and building materials?
- 6. Describe one use each for the igneous rocks granite, obsidian, and pumice.

Fill in the missing textures in the table below.

Origin of Igneous Rock	Resulting Texture
Slow cooling of magma far beneath Earth's surface	7.
Rapid cooling of lava in which tiny crystals form	8.
Extremely rapid cooling of lava in which no crystals form	9.

Building Vocabulary

Fill in the blank to complete each statement.

10. Igneous rock formed from lava that erupted onto Earth's surface is called _____ rock.

11. Igneous rock that formed when magma hardened beneath the surface of Earth is called

____rock.

Igneous Rocks

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 1. _____ People throughout history have used igneous rock for tools and building materials.
- 2. Basalt is used for cobblestones and in landscaping.
- Extrusive rock forms beneath Earth's surface. 3. _____
- Magma that is low in silica usually forms light-colored rocks, such as granite. 4. _____
- 5. Igneous rocks are classified by their origin, texture, and mineral composition.
- 6. _____ Extrusive rocks have <u>larger</u> grains than intrusive rocks.

Write the letter of the correct answer on the line at the left.

- 7. ____ Which terms best describe igneous rocks?
 - A light and easily broken
 - B soft and smooth
 - C hard and dense
 - D soft and dense
- 9. ____ Which igneous rock is mixed with soil and used for starting vegetable seeds?
 - A perlite
 - B granite
 - C obsidian
 - D basalt

- 8. ____ How do coarse-grained igneous rocks form?
 - A from sedimentary rocks changed under pressure
 - B from large rock particles cemented together
 - C from rapidly cooling lava
 - D from slowly cooling magma
- **10.** Which igneous rock is an extrusive rock?
 - A porphyry
 - B rhyolite
 - C peqmatite
 - D granite

Sedimentary Rocks

Understanding Main Ideas

Answer the following question on the space provided.

1. In order, list the sequence of processes through which sedimentary rocks form.

Classify each of the following sedimentary rocks by writing *clastic, organic, or chemical* in the blank beside it.

2	sandstone	6	breccia
3	limestone made from shells	7	limestone made from precipitated calcite
4	conglomerate	8	rock salt
5	coal	9	shale

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

clastic rock	a.	small, solid pieces of material from rocks or living things
sediment	b.	the process that presses sediments together
	C.	sedimentary rock formed from remains of plants and animals
_cementation	d.	the process by which running water, wind, or ice carry away bits of broken-up rock
_ organic rock	e.	the process in which dissolved minerals crystallize and glue sediment together
_ chemical rock	f.	sedimentary rock that forms when rock fragments are squeezed together
deposition	g.	the process by which sediment settles out of water or wind
_erosion	h.	sedimentary rock that forms when minerals dissolved in a water solution crystallize
	_ clastic rock _ sediment _ cementation _ organic rock _ compaction _ chemical rock _ deposition _ erosion	_ clastic rocka sedimentb cementationc cementationd organic rocke compactionf chemical rockg depositionh erosionh.

Sedimentary Rocks

Fill in the blank to complete each statement.

- 1. Geologists classify sedimentary rocks into three major groups: ______rock, chemical rock, and organic rock.
- 2. ______ is a sedimentary rock formed from the remains of swamp plants buried in water.
- 3. ______ is a sedimentary rock formed from coral, shells, and skeletons that piled up on the ocean floor.
- 4. ______ is the process by which sediments get pressed together.
- 5. Sand grains, pebbles, mud, shells, and leaves are all examples of _____
- 6. Clastic rocks are grouped by the ______ of the rock fragments of which they are made.

Write the letter of the correct answer on the line at the left.

7.	Which is the process that breaks up	8 Which forms when minerals dissolved
	rock on Earth's surface?	in a water solution crystallize?
	A deposition	A clastic rock
	B erosion	B organic rock
	C compaction	C chemical rock
	D weathering	D sediment
9.	Which is an example of an organic	10. Which rock can be a chemical or an
	rock?	organic rock?
	A breccia	A limestone
	B coal	B sandstone
	C rock salt	C shale
	D shale	D conglomerate

Chapter: 11 Plate Tectonics

Lesson 1 Drifting Continents

Understanding Main Ideas

Answer the following questions in the spaces provided. Use a separate sheet of paper if you need more room.

- 1. State the hypothesis of continental drift.
- **2.** Describe the land features that provided evidence for Wegener's hypothesis.
- 3. What role did the fossil *Glossopteris* play in Wegener's hypothesis?
- 4. How did Wegener use climate evidence to support his hypothesis?
- 5. Why did most scientists reject Wegener's theory for nearly half a century?

Building Vocabulary

- 6. All the continents were joined together in a supercontinent that Wegener called ______.
- **7.** A(n) ______ is any trace of an ancient organism preserved in rock.
- 8. Wegener's idea that the continents slowly moved over Earth's surface became known as _____

Lesson 1 Drifting Continents

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- Pangaea is the supercontinent that Wegener suggested occurred on Earth 1. about 300 million years ago.
- _____ Wegener inferred that the ancient <u>plants</u> *Mesosaurus* and *Lystrosaurus* once lived on a single landmass that has since split apart. 2.
- Wegener used evidence from land features, fossils, and <u>climate</u> to support his theory of continental drift. 3.
- 4. _____ Oceanic drift is the idea that the continents slowly moved over Earth's surface.
- 5. _____ Most geologists of Wegener's time <u>accepted</u> his idea of drifting continents.

Fill in the blank to complete each statement.

6. ______ of the plant *Glossopteris* provided evidence for Wegener's hypothesis for

continental drift.

7. The idea of continents moving slowly over Earth's surface was developed by German

scientist

- 8. Wegener noticed that mountain ranges on the continents of South America and line up.
- 9. As a continent moves ______ the poles, its climate gets colder.

10. As a continent moves toward the equator, its climate gets ______.

Lesson 2 Sea-Floor Spreading

Understanding Main Ideas

Use the diagram below to answer Questions 1–5 on a separate sheet of paper.

- 1. Name and describe the feature of the ocean floor shown at A.
- 2. Name the process occurring at B, and explain what results from it.
- 3. What happens to old oceanic crust as new molten material rises from the mantle?
- 4. The arrows on the diagram show the ocean floor spreading from the ridge. What are three kinds of evidence scientists have found to support this idea?
- 5. What process is shown occurring at C, and why does it occur?

Building Vocabulary

- 6. A canyon on the ocean floor at which the crust bends downward is called a(n)
- 7. The process that continually adds new material to the ocean floor is called
- 8. The process by which the ocean floor sinks into the mantle is known as ______
- 9. A chain of underwater mountains along which sea-floor spreading occurs is a(n)

Name	9	Date	Class
Le Write	esson 2 Sea-Floo	r Sp	preading
1	Which features form the longest	2	Which process adds more crust to
A	the mid-ocean ridges	Li A	suction
E	3 the deep-ocean trenches	E	sea-floor spreading
C	the Rockies	C	subduction
C) the Andes	C	magnetic stripe
3	Where does subduction occur?	4	Which process or processes change
A	along the middle of some ocean floors	tł	ne size and shape of the oceans?
E	3 down the middle of mountain ranges	A	subduction only
C	c on continents	E	sea-floor spreading only
C) at deep-ocean trenches	C	both subduction and sea-floor spreading
		C	both drilling for samples and subduction

If the statement is true, write *true*. If the statement is false, change the underlined word or words to make the statement true.

5. <u>Sonar</u> is a device that scientists use to map the ocean floor.

6. _____ A deep-ocean trench is an underwater mountain.

7. _____ Molten material erupts inside the central valley of mid-ocean ridges.

- 8. _____ The farther from a mid-ocean ridge a rock sample is taken, the <u>younger</u> the rock is.
- 9. _____ Sea-floor spreading occurs at <u>mid-ocean ridges</u>.
- **10.** _____ The pattern of magnetic stripes in rocks on either side of a mid-ocean ridge

is <u>the same</u>.

Name ______ Date _____ Class _____

Lesson 3 The Theory of Plate Tectonics

Understanding Main Ideas

Label each diagram by writing the type of plate boundary it shows.

Answer the following questions on a separate sheet of paper.

4. Describe what happens when (a) two plates carrying oceanic crust collide,

(b) two plates carrying continental crust collide, and (c) a plate carrying oceanic crust collides with a plate carrying continental crust.

5. Explain what force caused the movement of the continents from one supercontinent to their present positions.

Building Vocabulary

- 6. At a(n) ______, plates come together.
- 7. Breaks in Earth's crust where rocks have slipped past each other are called
- 8. The lithosphere is broken into separate sections called ______.
- 9. A(n) ______ is a deep valley on land that forms along a divergent boundary.
- 10. The geological theory that states that pieces of Earth's crust are in constant, slow motion is called
- **11.** At a(n) ______, plates slip past each other.
- **12.** Plates move apart along a(n)

Lesson 3 The Theory of Plate Tectonics

If the statement is true, write *true*. If the statement is false, change the underlined word or words to make the statement true.

- 1. _____ Earth's plates meet at <u>boundaries</u>.
- 2. _____ Breaks in the crust called <u>faults</u> form where plates meet.
- 3. _____ Plates slide past each other at <u>convergent boundaries</u>.
- **4.** ______ A(n) <u>rift valley</u> forms where plates diverge on land.
- 5. _____<u>Ocean</u> currents drive Earth's plates.
- 6. _____ Most transform boundaries where plates move apart occur along the midocean ridges.

Write the letter of the correct answer on the line at the left.

7.	Which theory describes the motion	8. What is the motion of Earth's plates
	of and force driving Earth's plates?	like?
	A first law of motion	A fast and in stages
	B third law of motion	B slow and in stages
	C continental drift	C fast and constant
	D plate tectonics	D slow and constant
9.	The San Andreas fault is an example	10. Which feature forms at convergent
	of which kind of boundary?	boundaries?
	A transform	A mountain range
	B divergent	B trench

- C oceanic
- D convergent

C rift valley D mid-ocean ridge

Chapter: 12 Earthquakes Lesson 1 Forces in Earth's Crust

Understanding Main Ideas

Use the diagrams below to complete items 1–9.

Diagram A

- 1. Type of Fault: _____
- 2. Stress Force: _____
- 3. Movement Along Fault: _____

Diagram B

- 4. Type of Fault:
- 5. Stress Force:
- 6. Movement Along Fault:

Diagram C

- **7.** Type of Fault: _____
- 8. Stress Force:
- 9. Movement Along Fault:

Building Vocabulary

Write a definition for each of these terms on a separate sheet of paper.

10. shearing _____

11. plateau _____

Lesson 1 Forces in Earth's Crust

Fill in the blank to complete each statement.

- 1. Stress is a(n) ______ that acts on rock to change its shape or volume.
- **2.** The collision of two plates causes the formation of mountains.
- 3. When two plates move away from each other ______ faults are created.
- **4.** A large area of flat land elevated high above sea level is a(n) ______.
- Tension can cause the formation of fault-block mountains or ______.
- 6. A fold in rock that bends upward into an arch is a(n) ______.

Write the letter of the correct answer on the line at the left.

- 7. ____ The stress force that pulls on the crust and thins rock in the middle is
 - A shearing
 - B compression
 - C tension
 - D uplifting

- 8. ____ The stress force that squeezes rock until it folds or breaks is
 - A shearing
 - B compression
 - C tension
 - D uplifting
- **9.** A fault in which the rocks on either side of the fault move sideways past each other is a
 - A slip-strike fault
 - B normal fault
 - C hanging fault
 - D reverse fault

- 10. ____ Compression causes the formation of
 - A only anticlines
 - B only synclines
 - C both anticlines and synclines
 - D neither anticlines nor synclines

Name	Date	Class	

Lesson 2 Earthquakes and Seismic Waves

Understanding Main Ideas

Answer the following questions on a separate sheet of paper.

1. What are seismic waves?

2. In what order do the three types of seismic waves arrive at a seismograph?

- 3. Which type of seismic wave produces the most severe ground movement?
- 4. Describe the moment magnitude scale, and explain why it is useful in measuring earthquakes.
- 5. How do geologists locate the epicenter of an earthquake?

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

6	focus	a.	records ground movements caused by seismic waves as they move through Earth
7	epicenter	b.	slowest seismic waves
8	surface waves	C.	the point beneath Earth's surface at which rock under stress breaks and triggers an earthquake
9	seismograph	d.	the point on the surface directly above the point at which an earthquake occurs

Name	Date	Class
	Duto	01000

Lesson 2 Earthquakes and Seismic Waves

If the statement is true, write *true*. If the statement is false, change the underlined word or

words to make the statement true.

- The shaking and trembling that results from movement of <u>rock</u> beneath Earth's surface is called an earthquake.
- 2. _____ Earthquakes are caused by the forces of mountain movement.
- **3.** _____ The epicenter of an earthquake is <u>below</u> the focus.
- 4. _____ <u>P waves</u> can become surface waves when they reach Earth's surface.
- The Modified Mercalli scale rates the amount of <u>damage</u> from an earthquake.
- To locate the epicenter of an earthquake, geologists need data from two or more seismographs.

- 7. Seismic waves are ______ that are similar to sound waves.
- The ______ of an earthquake is the point where rock under stress begins to break or move.
- 9. The seismic waves that move fastest are _____.
- **10.** Geologists use the moment magnitude scale to rate the total ______released by an earthquake.

 Name
 Class

Lesson 3 Monitoring Earthquakes

Understanding Main Ideas

Answer the following questions in the spaces provided.

- 1. How does a seismogram show earthquake waves?
- 2. What data do geologists use to see where earthquakes are most common?
- 3. What is the main factor in determining the risk that a location might have an earthquake?
- 4. What is the Ring of Fire?

Building Vocabulary Write a definition for the following term on the lines below.

5. Seismogram

Name	Date	Class	

Lesson 3 Monitoring Earthquakes

If the statement is true, write *true*. If the statement is false, change the underlined word or words to make the statement true.

- 1. _____ In a seismograph, seismic waves cause the <u>pen</u> to vibrate, which produces a pattern of zig-zag lines.
- 2. _____ On a seismogram, higher lines drawn in the paper indicate <u>weaker</u> seismic waves.
- 3. _____ The first waves shown on a seismogram are the <u>P waves</u>.
- 4. _____ The highest risk of earthquakes in the United States is along the west coast.
- 5. _____ The Ring of Fire is an area of seismic activity around the <u>Atlantic</u> Ocean.
- 6. _____ Russia and <u>Canada</u> have had very few earthquakes.

- 7. Earthquakes occur most often along ______ boundaries.
- 8. On a seismogram, smaller waves that occur after the earthquake indicate a(n)_____
- **9.** The weight and pen of a seismograph resist ______ during an earthquake.
- **10.** Geologists cannot yet predict ______ and where an earthquake will occur.

Chapter: 13 Erosion and Deposition Lesson 1 Mass Movement

Understanding Main Ideas

Identify each of the examples below by writing landslide, mudslide, slump, or creep on the line beside it.

- 1. Watery clay soil slides down a mountain.
- 2. _____ A telephone pole leans downhill.
- 3. _____ Rock at the top of a steep cliff quickly falls.
- 4. _____ After a heavy rainfall, rock and soil on a desert hill slide to the bottom.
- 5. _____ After many years, a gravestone on a hillside falls over.
- 6. _____ Rock and soil suddenly slip downhill in one large mass.
- 7. _____ Where a new road was just built, rock and soil move down a slope.

Answer the following questions on a separate sheet of paper.

8. What causes mass movement?

9. Describe how three processes act together to wear down and build up Earth's surface.

Building Vocabulary

- **10.** The agents of erosion lay down sediment in new locations in a process called
- **11.** The material moved by erosion is called ______.
- 12. The process by which natural forces move weathered rock and soil from one place to another is called _____.
- _____ includes several processes caused by gravity that 13. move sediment downhill.
- 14. ______ is the force that pulls objects downward.

Name	Date Class
Lesson 1 Mass Mo Write the letter of the correct answer on the	vement line at the left.
 Which type of mass movement happens very slowly? 	 By which process is sediment laid down?
A slump	A erosion
B creep	B deposition
C landslide	C weathering
D mudslide	D mountain building
3. Which of these is <i>not</i> an agent of erosion?	 In which type of mass movement can soils behave like a liquid and start flowing?
A water	A slump
B gravity	B creep
C waves	C landslide
D sediment	D mudslide

If the statement is true, write *true*. If the statement is false, change the underlined word or words to make the statement true.

- 5. _____ The cycle of erosion and deposition is <u>never-ending</u>.
- 6. _____ Gravity moves rocks and soil <u>uphill</u>.
- 7. _____ Landslides happen slowly.
- 8. _____ Slump is an example of mass movement.
- 9. <u>Weathering</u> is the process by which rock and soil are moved from place to place.
- **10.** ______ Sediment may consist of pieces of rock or soil, or the remains of <u>organisms</u>.

_____ Date _____ Class _____

Lesson 2 Water Erosion

Understanding Main Ideas

Answer the following questions on a separate sheet of paper.

- 1. What role has moving water played in shaping Earth's surface?
- 2. What are five landforms formed by river erosion?
- 3. What are two landforms formed by river deposition?
- **4.** How does groundwater cause erosion?

Building Vocabulary

Fill in the blank to complete each statement.

5. A bend in a river shaped like a loop is called a(n) ______.

- 6. Where a stream leaves a mountain range you'll find a(n) _____ , a wide, sloping deposit of sediment.
- **7.** A(n) is a channel along which water is continually flowing down a slope.
- 8. The water that moves over the land and carries particles with it is called ______.
- 9. A cone-shaped deposit that rises from the floor of a cave is known as a(n)
- **10.** A(n) ______ is a large groove, or channel in the soil that carries runoff after a rainstorm.
- **11.** A type of landscape in rainy regions where caverns, sinkholes, and deep valleys are common is called _____.
- **12.** A(n) ______ is a deposit that hangs from the roof of a cave.

13. When runoff travels downhill, it forms tiny grooves in the soil called ______

14. The term geologists use for underground water is _____

is the flat, wide area of land along side of it. 15. A river's

Lesson 2 Water Erosion

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

1	_ Vegetation, such as grasses, <u>increases</u> runoff.
2	An oxbow lake is a meander that has been cut off from the river.

- **3.** ______ Groundwater can cause erosion through <u>chemical</u> weathering.
- 4. ____ A(n) alluvial fan forms when sediment gets laid down where a river flows into an ocean.
- 5. _____ Waterfalls and rapids occur where rivers meet and flow over hard rock.
- 6. _____ Deltas and alluvial fans form at the point of river erosion.

Write the letter of the correct answer on the line at the left.

- What is a channel with continually 7. flowing water that flows into a larger river called?
 - A gully
 - B flood plain
 - C rill
 - D tributary
- 9. What is a meander?
 - A a bend in a river
 - B the wide area of land along a river
 - C a fan-shaped sediment deposit
 - D a large groove in the soil

- 8. Which increases runoff?
 - A planting crops
 - B cutting down crops
 - C flattening land
 - D replacing pavement with trees
- 10. ____ Which features are common in areas of karst topography?
 - A streams
 - B alluvial fans
 - C sinkholes
 - D deserts

Name

_____ Date _____ Class _____

Lesson 3 Glacial Erosion

Understanding Main Ideas

Answer the following questions on a separate sheet of paper.

1. What are the two kinds of glaciers, and how are they different?

2. How do glaciers form?

2. How do glaciers move?

- 3. By what processes do glaciers erode the land?
- 5. When do glaciers deposit sediment?

Complete the table by writing *erosion* or *deposition* for each landform.

	Glacial Landform	Result of Erosion or Deposition?
6.	Moraine	
7.	Horn	
8.	Cirque	
9.	Kettle	
10.	U-shaped valley	
11.	Arête	
12.	Drumlin	

Building Vocabulary

Fill in the blank to complete each statement.

13. A glacier picks up rocks through a process called ______.

14. Times when continental glaciers cover large parts of Earth's surface are called _____

15. A(n) ______ is any large mass of ice that moves slowly over land.

16. The sediments deposited by a glacier are called ______.

Lesson 3 Glacial Erosion

Write the letter of the correct answer on the line at the left.

1.		_What makes up till?	2		_ Which landform is formed by glacial deposition?
	Α	clay only	1	A	moraine
	В	sand only	l	В	cirque
	С	silt and sand only	(С	horn
	D	clay, silt, sand, gravel, and boulders	I	D	arête
3.		_ A glacier begins to move when the snow	4 .	up	_ By which process does a glacier pick rocks?
	an A	d ice build to which thickness? 10 to 20 meters	,	A	abrasion
	В	20 to 30 meters	(C B	melting
	С	30 to 40 meters	I	D	deposition
	υ				

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 5. _____ A <u>continental</u> glacier flows in all directions.
- **6.** Glaciers gouge and scratch bedrock through the process of abrasion.
- 7. _____ A small depression called a <u>kettle</u> forms when a chunk of ice is left in glacial till.
- 8. During the ice ages, <u>valley</u> glaciers covered large parts of Earth's surface.
- 9. _____ A glacier is any large mass of ice that moves <u>quickly</u> over land.
- **10.** _____ A glacier deposits sediment when it <u>freezes</u>.

Name	Date	Class

Lesson 4 Wave Erosion

Understanding Main Ideas

On a separate sheet of paper, identify each numbered landform in the diagram below and describe how it formed.

Answer the following questions on a separate sheet of paper.

- 1. What are two ways in which waves erode the land?
- 2. Explain how waves eventually even out a shoreline.
- 3. What are four features formed by wave erosion?

Building Vocabulary

- The process by which beach sediment moves down the beach with the current is called ______.
- 5. An area of wave-washed sediment along a coast is a(n) ______.
- 6. A(n) ______ is a beach that projects like a finger out into the water.
- 7. A(n) ______ is a part of the shore that sticks out into the ocean.

Name _____ _____ Date _____ Class _____ Lesson 4 Wave Erosion

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

- 1. _____ Sometimes, when a sea arch collapses, a sea <u>cave</u> remains.
- 2. _____ Where coastal rock is softer, waves erode the land <u>faster</u>.
- 3. _____ When waves <u>speed up</u>, wave deposition occurs.
- 4. _____ Waves erode the land by abrasion and <u>deposition</u>.
- 5. _____ In the process called longshore drift, beach sediment gets moved down a beach with the current.
- 6. _____ Waves change direction as they approach shore because they begin to drag.

Write the letter of the correct answer on the line at the left.

7.	As waves approach the shore and	8 Which process occurs when waves
	change direction, on which landform is	carrying sediment wear away rocks
	most of their energy concentrated?	along a coast?
	A headlands	A deposition
	B beaches	B abrasion
	C sandbars	C impact
	D sea caves	D chemical weathering

- **9.** Which landform is a long, narrow island parallel to the coast? wave erosion?
 - A sandbar
 - B headland
 - C barrier beach
 - D spit

- 10. ____ Which is a coastal feature formed by
 - A sandbar
 - B spit
 - C beach
 - D sea arch

Lesson 5 Wind Erosion

Understanding Main Ideas

Answer the following questions in the spaces provided.

- **1.** Describe the process by which wind causes erosion.
- **2.** Describe how wind moves different sizes of sediment.

- **3.** How does a sand dune form?
- 4. How are the sediments in loess deposits different from the sediments in a sand dune?

Building Vocabulary

- 5. The process by which wind removes surface materials is ______.
- 6. Fine sediment deposited by wind is _____.
- 7. A deposit of windblown sand is called a(n)

Lesson 5 Wind Erosion

Write the letter of the correct answer on the line at the left.

1	What is desert pavement?	2. What happens when wind slows	
А	wind-blown clay	down or meets an obstacle?	
В	wind-blown clay and silt	A erosion	
С	an area of rock fragments exposed by wind	B chemical weathering	
D	an area of sand deposits exposed by wind	C deposition	
		D mechanical weathering	
3	What makes up loess?	4. Which size particles does the wind	
А	clay only	usually skip and bounce for short distances	s?
В	clay and silt	A sand	
С	sand only	B boulders	
D	clay, silt, sand, and gravel	C clay and silt	

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

5. _____ When wind blows over the land, it picks up the smallest particles of sediment.

D clay

- 6. _____ Loess helps to form fertile soil.
- 7. _____ Abrasion by wind-carried sand causes <u>much</u> erosion.
- 8. _____ Plant roots do help to anchor sand dunes in one place.
- 9. _____ The shape of a sand dune is determined by the <u>speed</u> of the wind.
- **10.** _____ The <u>weaker</u> the wind, the larger the particles that it can pick up.

Class ___ Name __ Date ____ **Chapter: 14 A Trip Through Geologic Time** Lesson 1 Fossils

Understanding Main Ideas

Fill in the blanks in the table below. Answer the questions that follow on a separate sheet of paper.

	Type of Fossil	Description		
1.	Petrified fossil	Fossils in which an organism	replace all or part of	
2.		A hollow area in sediment in the shape of an organism		
3.		A solid copy of the shape of the organism		
4.	Carbon film	An extremely thin coating of	on rock	
5.	Trace fossils	Evidence of the	of ancient organisms	
6.		Remains of organisms in tar, amber, or i	се	

7. Describe how a mold is related to a cast.

8. What can a paleontologist tell from fossil footprints of a dinosaur?

9. What does the fossil record reveal about the evolution of life on Earth?

Building Vocabulary

Match each term with its definition by writing the letter of the correct term in the right column on the line beside the definition in the left column.

10. no longer and never again existing as an organism on Earth	a. evolution
11. the preserved remains or traces of living things	b. sedimentary roo
12. the process by which all the different kinds of living things have changed over long periods of time	c. extinct
13. the type of rock that is made of hardened sediment	d. paleontologist

- **14.** an extremely thin coating of carbon on rock
- 15. _____a scientist who studies fossils

- ck
- e. fossils
- f. carbon film

Name	Date Class
Lesson 1 Fossils	
Write the letter of the correct answer on the	he line at the left.
1. A hollow area in sediment in the	2. A solid copy of the shape of an
shape of an organism or part of an	organism is
organism is	A a mold
A a cast	B a carbon film
B a mold	C a cast
C a trace fossil	D a fossil record
D a petrified fossil	
3. What type of fossils provide evidence	e 4. Which of the following substances is
of the activities of ancient organisms?	not able to preserve entire organisms?
A molds and casts	A sticky tar
B petrified fossils	B water
C trace fossils	C amber
D carbon films	D ice
Fill in the blank to complete each stateme	ent.
5. Most fossils form when living things die an	nd are buried by that hardens

- into rock over time.
- 6. A(n) ______ is an extremely thin coating of carbon on rock.
- 7. The term ______ is used to identify a scientist who studies fossils.
- 8. Scientists study the ______ to learn about the history of life,

past environments on Earth, and how different groups of organisms have changed over time.

- 9. ______ is the gradual change in living things over long periods.
- **10.** An organism is _______ if it no longer exists and will never live again on Earth.

____ Date _____ Class _____

Lesson 2 The Relative Age of Rocks

Understanding Main Ideas

Look at the diagram below. Then answer the questions that follow on a separate sheet of paper.

- 1. What is the youngest rock layer? Explain.
- 2. Is the extrusion older or younger than rock layer B? Explain.
- 3. Is the fault older or younger than rock layer A? Explain.
- 4. How could a geologist use the fossil in rock layer B to date a rock layer in another location?

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

- 5. fault
- 6. ____ extrusion
- 7. ____ unconformity
- 8. relative age
- **9.** ____ law of superposition
- 10. ____ intrusion
- 11. ____ absolute age
- 12. ____ index fossils

- **a.** the number of years since a rock has formed
- **b.** a break in Earth's crust
- c. the way to determine relative ages of rocks
- d. a hardened layer of magma beneath Earth's surface
- e. the age of a rock compared with the age of other rocks
- f. fossils used to help geologists match rock layers
- g. the surface where new rock layers meet a much older rock surface beneath them
- h. a hardened layer of lava on Earth's surface

Lesson 2 The Relative Age of Rocks

Write the letter of the correct answer on the line at the left.

1.	The number of years that have passed	2	_ The age of a rock compared to the	
	since he rock formed is the rock's	aç	es of other rocks is the rock's	
	A relative age	А	absolute age	
	B law of superposition	В	geologic age	
	C absolute age	С	sedimentary age	
	D index fossil	D	relative age	
		_		
3.	A formation of igneous rock on	4	_ A break in Earth's crust is called	
	Earth's surface is known as	A	an intrusion	
	A a gap	В	a fault	
	B an intrusion	С	a layer	
	C a fault	D	an index fossil	
	D an extrusion			
Fill in the blank to complete each statement.5. Geologists use the law of to determine the relative ages of sedimentary				
	rock layers.			
6.	3. A mass of igneous rock below the Earth's surface is called a(n)			
7.	Because of, most of the	e geologic re	ecord of sedimentary rock layers has	
	been lost.			
8.	A gap in the geologic record is known as a(n)			
9.	9. The position in which rock layers appear can be changed by gaps in the geologic record and by			
10.	According to the law of	, in horizont	al sedimentary rock layers the oldest	
	layer is at the bottom and the youngest layer is at the top.			

 Name
 Date
 Class

 Lesson 3 Radioactive Dating

Understanding Main Ideas

Look at the diagram below. Then answer the questions that follow on a separate sheet of paper.

- 1. Can geologists use radioactive dating to find the absolute ages of sedimentary layers A, B, C, D, and E? Explain why or why not.
- Can geologists use radioactive dating to find the absolute ages of the extrusion or the intrusion? Explain why or why not.

3. What is the relative age of rock layer C? Explain how you determined its age.

4. Explain the natural process on which radioactive dating is based.

Building Vocabulary

- 5. During a natural process called ______, the atoms of one element break down to form atoms of another element.
- The elements formed after atoms have broken down and reformed are said to be _____
- The time it takes for half of the atoms in a sample of a radioactive element to decay is called the element's _____.

Lesson 3 Radioactive Dating

If the statement is true, write true. If the statement is false, change the underlined word or words to make the statement true.

1. _____ Most elements do not change.

2. _____ Some <u>elements</u> can decay over time.

- 3. _____ The rate of decay of any radioactive element <u>changes</u> frequently.
- 4. _____ Radioactive elements occur naturally in <u>sedimentary</u> rocks.
- 5. _____ Geologists use radioactive dating to determine the absolute ages of rocks.
- 6. All plants and animals contain carbon.

Fill in the blank to complete each statement.

7. An element that has broken down and released particles and energy is said to be

- 8. ______ is a method of determining the absolute ages of rocks.
- 9. ______ is the time it takes for half of the radioactive atoms in an element to decay.
- 10. During ______, the atoms of one element break down to

form atoms of another element.

 Name
 Date
 Class

Lesson 4 The Geologic Time Scale

Understanding Main Ideas

Put the following items in order from oldest (D) to most recent (A) by writing a letter in the blank beside each one.

- 1. ___ Mesozoic Era
- 2. ____ Precambrian Time
- 3. ____ Cenozoic Era
- 4. ____ Paleozoic Era

Answer the following questions on a separate sheet of paper.

- 5. Why is the geologic time scale used to show Earth's history?
- 6. How would you rewrite the following sentence to make it true? Geologists subdivide periods into eras.
- 7. What methods did geologists use when they first developed the geologic time scale?
- 8. How did geologists decide where one division of the geologic time scale ends and the next begins?

Building Vocabulary

Match each term with its definition by writing the letter of the correct term in the right column on the line beside the definition in the left column.

9.	a unit of geologic time that subdivides eras	A. period
10.	a long unit of time used to divide the time between Precambrian Time and the present	B. geologic time scale
11.	a record of the geologic events and the evolution of life forms as shown in the fossil record	C. era

Name	Date	Class

Lesson 4 The Geologic Time Scale

If the statement is true, write *true.* If the statement is false, change the underlined word or words to make the statement true.

- 1. _____ The geologic time scale is a record of <u>the geologic events and</u> <u>the evolution of life forms</u> as shown in the fossil record.
- 2. _____ The first step in developing <u>the geologic time scale</u> was studying rock layers and index fossils worldwide.
- 3. _____ Scientists divided the time between Precambrian Time and the present into <u>four</u> units of time, or eras.

4. _____ Periods are subdivided into units of geologic time called eras.

- 6. Scientists chose where units of geologic time began and ended based on major changes in
- _____at certain times.
- 7. The long span of time that begins geologic time is called ____
- Geologists divided the time between Precambrian Time and the present into three long units of time called _____.
- **9.** The Triassic Period, the Jurassic Period, and the Cretaceous Period occurred in the Era.
- **10.** ______ for many of the geologic periods come from places around the world where geologists first described the rocks and fossils of that period.